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a b s t r a c t 

During recent years, quality-aware features extracted from natural scene statistics (NSS) models have 

been used in development of blind image quality assessment (BIQA) algorithms. Generally, the univariate 

distributions of bandpass coefficients are used to fit a parametric probabilistic model and the model pa- 

rameters serve as the quality-aware features. However, the inter-location, inter-direction and inter-scale 

correlations of natural images cannot be well exploited by such NSS models, as it is hard to capture such 

dependencies using univariate marginal distributions. In this paper, we build a novel NSS model of joint 

log-contrast distribution to take into account the across space and direction correlations of natural im- 

ages (inter-scale correlation to be explored as the next step). Furthermore, we provide a new efficient 

approach to extract quality-aware features as the gradient of log-likelihood on the NSS model, instead 

of using model parameters directly. Finally, we develop an effective joint-NSS model based BIQA metric 

called BJLC (BIQA based on joint log-contrast statistics). Extensive experiments on four public large-scale 

image databases have validated that objective quality scores predicted by the proposed BIQA method 

are in higher accordance with subjective ratings generated by human observers compared with existing 

methods. 

© 2018 Published by Elsevier B.V. 
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. Introduction 

Blind or no-reference image quality assessment has recently be-

ome an active research topic, whose objective is to estimate the

uman perception of image quality without any access to the orig-

nal reference image [1,2] . It can be deployed in every location

f an image communication system whenever the distorted im-

ge is available for evaluation. Generally, blind image quality as-

essment (BIQA) methods are divided into two groups, distortion-

pecific and general-purpose methods. Distortion-specific methods

ocus on specific applications where distortion types are known in

dvance [3–7] . General-purpose methods are designed to evaluate

mage quality without any cues to distortion types [8–14] . 

Natural scene statistics (NSS) based methods constitute the ma-

ority of existing general-purpose BIQA methods. The underlying

hilosophy of NSS based methods lies in that natural visual stimuli

ould possess certain statistical regularities, regardless of different

ontents, and distortions introduced in different image processing

tages would damage such regularities [1,15] . Therefore, the devia-

ion of the statistics of a query image from that of the NSS model
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ould reveal the distortion degree of that image. A plethora of

SS models in different spatial or transform domains have been in-

orporated into state-of-the-art BIQA methods [16–26] . BIQI (blind

mage quality index) [16] is a wavelet NSS based method that

xtracts generalized Gaussian distribution (GGD) parameters from

avelet subband coefficients. The exponential decay characteris-

ics (EDC) of wavelet energies across scales have been utilized in

RNSS (sparse representation of NSS feature) method [18] . MKL

multiple kernel learning) extracts statistical features of wavelet

arginal distribution, mutual information between neighboring

oefficients and EDC properties as quality-aware features [19] . In

IIVINE (distortion identification-based image verity and integrity

valuation) [17] , the divisively normalized wavelet subbands are

sed to build GGD models. To account for the correlation across

cale and orientation, GGD models are fitted on the stacked sub-

and coefficients with the same orientation or scale. Structural

imilarity between subbands is also calculated to measure their

orrelation. C-DIIVINE (Complex DIIVINE) [20] , a complex exten-

ion of DIIVINE, has adopted three NSS models in complex wavelet

omain, i.e., the complex GGD model of wavelet coefficient mag-

itudes, the GGD model of relative magnitudes and the wrapped

auchy distribution (WCD) model of relative phases. BLIINDS (blind

mage integrity notator using DCT statistics) extracts the contrast,

tructure and anisotropy features from block DCT coefficients [21] .

https://doi.org/10.1016/j.neucom.2018.11.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.11.015&domain=pdf
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Later, it was extended to BLIINDS2 by using GGD to fit the block

DCT coefficients and some partitions of the DCT block [22] . The

mean subtracted contrast normalized (MSCN) coefficients are used

to build the spatial domain NSS models, including GGD of MSCN

coefficients and asymmetric GGD (AGGD) of pairwise MSCN co-

efficient products [23] . The joint statistics of gradient magnitude

and Laplacian of Gaussian (LoG) responses in the form of marginal

and dependency histograms are used to build GMLOG method [27] .

Distributions of neighbouring pixel differences in four color chan-

nels (hue, saturation, opponent angel and spherical angle) are used

to build color NSS models to account for spatial correlation in color

descriptors [26] . 

There are also some methods using an ensemble of NSS models

from multiple domains to extract a more comprehensive feature

set. In DESIQUE (derivative statistics-based image quality evalua-

tor), GGD distributions of pixel-wise and pairwise log-derivative

statistics in both spatial and log-Gabor domains are combined to

form the quality-aware features [24] . ILNIQE has adopted the GGD

of MSCN coefficients, AGGD of MSCN products, GGD of directional

gradients, Weibull distribution of gradient magnitudes in lumi-

nance, log-Gabor and opponent color space, as well as the Gaus-

sian distribution of logarithmic-scale opponent color space [28] . In

FRIQUEE (feature maps based referenceless image quality evalua-

tion engine), dozens of feature maps over several transform do-

mains and three color spaces are used to fit the GGD, AGGD and

WCD models [25] . 

Despite that NSS models in different domains have been ap-

plied in previous BIQA methods, we can observe that the con-

struction and utilization of NSS models mainly follow the same

framework. Generally, the marginal distributions of some band-

pass coefficients are fitted with a univariate parametric probabilis-

tic model, then the model parameters are adopted as the quality-

aware features. The most widely used natural image properties

for BIQA include the non-Gaussian distribution of bandpass re-

sponses, and the correlation properties of natural images across

space, scale and orientation. Univariate probabilistic models (such

as 1-D GGD, AGGD, WCD) are usually employed to depict the

non-Gaussian properties of bandpass coefficients [16,17,20,22–26] .

It has also been used in several methods [23,24,26] to measure

the spatial correlation by characterizing the marginal distribu-

tion of pairwise coefficients products or differences. For across

scale and orientation correlation, existing BIQA methods calcu-

late mutual information [19] , structural correlation [17] or en-

ergy ratio [22] between neighboring subbands to measure the

correlation. 

Thus, we summarize the limitations of existing NSS based BIQA

methods in three aspects: (1) univariate marginal distributions

adopted by previous NSS models have difficulties to capture the

correlation properties of natural images; (2) for measuring image

correlation, only two neighboring pixels or subbands are consid-

ered each time, which is insufficient to reflect the complex degra-

dation patterns as image distortions generally corrupt all pairs

simultaneously; (3) the direct adoption of model parameters as

quality-aware features is susceptible to the model fitting errors.

To address these problems, we build a novel comprehensive joint

log-contrast statistics based NSS model to account for the across

space and orientation correlation simultaneously by means of mul-

tivariate Gaussian mixture model (GMM). Furthermore, we employ

a new approach to extract quality-aware features as the gradient

of log-likelihood on the NSS model instead of directly using the

model parameters. In such a way, we circumvent the fitting er-

ror problems as no curve fitting is involved in the feature extrac-

tion. Extensive experiments conducted on four large-scale image

databases (i.e., LIVE [29] , CSIQ [30] , TID2013 [31] , CLIVE [32] ) show

that the proposed method highly correlates with human percep-

tion of visual quality. 
The rest of this paper is structured as follows. In Section 2 ,

he methodology of proposed BJLC quality metric is explained

n details. Extensive experiments and analysis are presented in

ection 3 , followed by conclusions in Section 4 . 

. BJLC metric 

We propose to measure across space and direction correlations

y using the joint log-contrast distribution and build a comprehen-

ive NSS model to approximate it. We show that joint log-contrast

esponse is sensitive to degraded images with different distortion

ypes and quality levels, and NSS model built on it is indicative

f image quality. Then we extract quality-aware features as the FV

Fisher Vector) on the generative NSS model, which describe the

istance of one degraded image from the NSS model. Finally, PLS

partial Least Square) regression method is adopted to relate the

uality-aware features to quality scores. 

.1. Joint directional log-contrast statistics 

We propose to use the joint log-contrast response in spatial do-

ain to measure the impact of various distortions on natural im-

ges, which is defined as follows. First, for each image pixel, we

efine a squared symmetric neighbor set of P pixels placed on a

quare whose sides have the length (2 R + 1) , as shown in Fig. 1 .

ere P is the number of neighboring pixels, and R is the spatial

esolution of the operator. Although we define the operator for a

eneral case based on a squared symmetric neighbor set, one can

lso generalize them to a circular one by interpolation [33] . 

We take advantage of the pairwise pixel differences to account

or the spatial correlation. Specifically, we subtract the center pixel

alue x c from the P neighboring pixels on the square side ( x 1 , x 2 , ...,

 P ), yielding the feature vector y = (y 1 , y 2 , . . . , y P ) = (x 1 − x c , x 2 −
 c , . . . , x P − x c ) . y is the gray-level differences vector which denotes

he contrast responses in different directions. 

Logarithm function is used to mimic the nonlinear human per-

eption on physical stimuli and narrow the range of contrast mag-

itudes: 

 i = sign (y i ) log (| y i | + 1) (1)

he log-contrast response for each pixel x c is then represented by

he vector z c = (z 1 , z 2 , . . . , z P ) , and z i represents the log-contrast

esponse in the i th direction. Unlike previous works using the uni-

ariate parametric model to approximate the marginal distribu-

ions independently, we propose to jointly model the multivariate

istribution by treating the log-contrast vector z c as a whole. In

uch a way, the inter-location and inter-direction correlations are

mplicitly encoded in the joint distribution. 

The proposed method is designed on the assumption that cues

o distortion type and degree can be captured by the joint dis-

ribution of directional log-contrast. To illustrate that the joint

istribution varies with the levels of distortions, we extract a

ollection set of z c from distorted versions of the painted house

mage. All images are from TID2013 database, and sample blocks

xtracted from the distorted images are shown in Fig. 2 . We use

ettings of ( R = 1 , P = 8) to calculate the joint log-contrast vector,

nd one pixel is associated with an 8-by-1 feature vector z c . We

se the collection of z c vectors from the reference image to learn

ne PCA (principal component analysis) mapping matrix. Then the

rst principal components associated with z c computed from dis-

orted images can be obtained by mapping the collection set using

he previous PCA matrix. By fixing the PCA projecting matrix, we

ake the first principal components of distorted images directly

omparable. 

As shown in Fig. 3 , one can observe that the first principal com-

onents of joint log-contrast response are quite informative of sub-

ective image quality. First, it is informative on the distortion type
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Fig. 1. Squared symmetric neighborhood for different ( P, R ). 

Fig. 2. Examples of image blocks with different types and levels of distortions. The 

distortion types for the four rows are: Gaussian white noise, Gaussian blur, JPEG 

compression, JPEG 20 0 0 compression. The distortion levels increase from left to 

right. (Block size = 128 × 128). 
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nd images with different distortions have characteristic variation.

enerally, Gaussian white noise (WN) changes the distribution to

 more uniform one with larger standard deviation. Gaussian blur

GB), JPEG and JPEG 20 0 0 (JP2K) generate a higher peaked distri-

ution. GB and JP2K exhibit a smooth distribution, while JPEG has

 jaggy distribution which may result from the blocking artifacts.

econd, it is informative on distortion degree. For the four dis-

ortion types considered here, we observe that the change of the

istribution is a monotonic function of the subjective scores. For

xample, WN increases the standard deviation of the distribution.

he larger the standard deviation, the lower the subjective quality
ig. 3. The first principal components of joint log-contrast responses of degraded image

mage. 
core. Similar observations can be made on other three distortion

ypes. Considering the effectiveness of the first principal compo-

ents of joint log-contrast response to represent image quality, we

ssume that more quality-awareness can be achieved if we model

he joint log-contrast response as a whole. 

Therefore, we propose one comprehensive NSS model, to rep-

esent the joint distribution of directional log-contrast response of

atural images. Specifically, we use the GMM to approximate such

oint distribution, and learn the GMM model using high-quality

atural images, which represents the average joint distribution of

ristine natural images. 

Given a feature space F ∈ R 

D , a GMM is defined as 

p( x | θ ) = 

K ∑ 

k =1 

ω k p k ( x | θ ) (2)

p k ( x | θ ) = 

1 √ 

(2 π) d | �k | 
e −

1 
2 ( x −μk ) �

−1 
k ( x −μk ) 

T 

(3)

ith prior probabilities ω k ∈ R , means μk ∈ R 

D and covariance

atrices �k ∈ R 

D ×D ( θ = { μ, �} ). The GMM distribution is a lin-

ar combination of Gaussian densities, with ω k as the probabilistic

ontribution of the k th component. 

We extract a large set of log-contrast vector z c from pristine

atural images, then the GMM parameters are learned in an unsu-

ervised manner using the Maximum Likelihood (MLP) criterion.

or computational simplicity, we use GMM with diagonal covari-

nces, and apply PCA to the feature vector before GMM learning. 

.2. Quality-aware feature extraction 

The learned joint NSS model represents the statistical regular-

ties of pristine natural images, and based on this NSS model, we

an extract the quality-aware features for each image. The tradi-

ional way to extracting features from NSS model is to fit the NSS

odel for each distorted image and use the model parameters as
s. (a) WN. (b) GB. (c) JPEG. (d) JP2K. MOS is the subjective quality score of each 
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features for quality assessment. It has the advantage of compact-

ness with only several parameters, but it may produce an inac-

curate representation due to the fitting errors, especially in the

case where the NSS model is not good enough for distorted im-

ages. When things come to multivariate distribution, two addi-

tional problems are raised. First, fitting a multivariate distribution

would require more samples than univariate distribution as the

curse of dimensionality. Feature samples extracted from one image

may not be sufficient to produce a stable model. Second, training

the GMM model for each image would be quite time-consuming,

especially when the components of GMM increase. Inspired from

the great success of FV in image classification, retrieval or match-

ing applications [34,35] , we have introduced it in BIQA framework

to describe the deviation of distorted images from NSS model. 

The idea of FV encoding is to characterize an image with a gra-

dient vector derived from a generative probability model. Let X =
{ x i , i = 1 , . . . , N} be a set of log-contrast features extracted from an

image, x i ∈ R 

D , where N is the number of features and D is the fea-

ture dimension. The log-likelihood of x i generated from the GMM

is represented as: 

L ( x i ) = log 

K ∑ 

k =1 

ω k p k ( x i | θ ) . (4)

Assuming that N features from one image are independent, the

log-likelihood of X is then given by 

L ( X ) = 

N ∑ 

i =1 

log 

( 

K ∑ 

k =1 

ω k p k ( x i | θ ) 

) 

. (5)

Fisher encoding [34] computes the gradient of the log-

likelihood of the N feature vectors from one image with respect

to the parameters of GMM model 

∇L ( X ) = 

1 

N 

N ∑ 

i =1 

∇ log 

( 

K ∑ 

k =1 

ω k p k ( x i | θ ) 

) 

. (6)

Previous works observed that the gradient with respect to the

weight parameter ω k does not provide significant information [35] .

Thus, the gradient is calculated with respect to the mean μk and

the covariance �k (variance vector σ2 
k 
) of GMM. These gradients

can be derived as follows [34] : 

G μ,d 

k 
= 

1 

N 

√ 

ω k 

N ∑ 

i =1 

γik 

(
x d 

i 
− μd 

k 

σ d 
k 

)
(7)

G σ,d 
k 

= 

1 

N 

√ 

2 ω k 

N ∑ 

i =1 

γik 

(
(x d 

i 
− μd 

k 
) 2 

(σ d 
k 
) 2 

− 1 

)
(8)

where γ ik is the chance that local descriptor x i is generated by

the k th Gaussian component using Bayes’ formula 

γik = 

ω k p k ( x i | θ ) ∑ K 
j=1 ω j p j ( x i | θ ) 

. (9)

The final FV representation for one image X is then the con-

catenation of G μ,d 

k 
and G σ,d 

k 
. 

Given the generative GMM model that represents the average

distribution of natural images, FV describes how the set of descrip-

tors extracted from one image deviate from the NSS model. It rep-

resents how the NSS model parameters should be modified to fit

the features from the image. Therefore, it measures the statistical

differences between one image and the universal NSS model. 

With the increase of GMM components, Fisher vectors become

sparser. [35] uses the dimension wise power normalization to un-

sparsify the features and improve the performance: 

f (v ) = sign (v ) | v | α (10)
here 0 ≤α ≤ 1 is the normalization parameter, and v is one di-

ension of the feature vector. Similar processing is used in this

ork and the parameter α is determined by experimental valida-

ion. 

.3. Regression module 

FV encoding generates a representation of length 2 KD , where K

s the number of GMM components and D is the dimension of

ocal features. We adopt PLS method as the regression module

o relate extracted quality-aware features to objective scores. PLS

odels relationships between independent variables and response

ariables by means of latent components. It was originally devel-

ped in chemometrics and has received much attention in other

cientific areas, such as bioinformatics, neuroscience, social science,

nd computer vision [36,37] . It is known be particularly suited for

ighly correlated, noisy data with high dimensionality [38] . 

Let X ∈ R 

m denotes an m -dimensional space of input variables

nd Y ∈ R 

n represents an n -dimensional space of response vari-

bles. PLS models the relationship between these two data sets

y means of latent components. Let the number of samples in the

ata sets be N , PLS decomposes the zero-mean variables X ∈ R 

N×m 

nd Y ∈ R 

N×n into 

 = T P T + E (11)

 = U Q 

T + F (12)

here T ∈ R 

N×p and U ∈ R 

N×p are matrices of the p score vec-

ors, P ∈ R 

m ×p and Q ∈ R 

n ×p are matrices of loadings, and E ∈
 

N×m and F ∈ R 

N×n are matrices of residuals. The classical form

f PLS method uses the nonlinear iterative partial least squares

NIPALS) algorithm to iteratively decompose X and Y to find the

eight vectors w, c such that 

 cov ( t, u )] 2 = [ cov ( X w, Y c )] 2 

= max | r| = | s | = 1 [ cov ( X r, Y s )] 2 (13)

here t and u are the column vectors of matrices T and U ,

nd cov ( t, u ) = t T u /N is the sample covariance between latent vec-

ors t and u . After the extraction of the latent vectors t 1 and u 1 ,

he matrices X and Y are deflated by subtracting their rank-one

pproximations based on t 1 and u 1 . This process is repeated un-

il the residuals are small enough or the desired number of latent

ectors is obtained. More details on PLS analysis can be referred

o [38] . 

We use X ∈ R 

m to represent the feature space of extracted

uality-aware features (i.e., FV representation), and Y ∈ R to de-

ote the quality score space of images. 

. Experiments 

.1. Experiment protocol 

.1.1. Database description 

The proposed method is examined on four large-scale image

atabases (i.e., LIVE [29] , CSIQ [30] , TID2013 [31] , CLIVE [32] ). LIVE,

SIQ and TID2013 databases include images degraded by simulated

istortions, while CLIVE database contains images degraded by re-

listic distortions. These databases are summarized as follows: 

• The LIVE image database consists of 779 distorted images with

five distortion types: JP2K, JPEG, WN, GB, and FF (simulated fast

fading Rayleigh channel). There are 29 reference images. Sub-

jective ratings are DMOS (Differential Mean Opinion Score) in

the range of 0 to 100. 
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• The CSIQ image database consists of 866 distorted images with

six distortion types: JPEG, JP2K, WN, GB, pink Gaussian noise

(PGN), and global contrast decrements (CTD). There are 30

reference images. Subjective ratings are MOS (Mean Opinion

Score) in the range of 0 to 1. 

• The TID2013 database consists of 30 0 0 distorted images with

24 distortion types: #01 WN, #02 WN in color components,

#03 spatially correlated WN, #04 masked noise, #05 high-

frequency noise, #06 impulse noise, #07 quantization noise,

#08 GB, #09 image denoising, #10 JPEG, #11 JP2K, #12 JPEG

transmission errors, #13 JP2K transmission errors, #14 non ec-

centricity pattern noise, #15 local blockwise distortion of differ-

ent intensity, #16 mean shift, #17 contrast change, #18 change

of color saturation, #19 multiplicative Gaussian noise, #20 com-

fort noise, #21 lossy compression of noisy images, #22 image

color quantization with dither, #23 chromatic aberrations and

#24 sparse sampling and reconstruction. There are 25 reference

images. Subjective ratings are MOS in the range of 0 to 9. 

• The CLIVE (LIVE in the wild image quality challenge database)

image database consists of 1162 distorted images with realistic

distortions, such as low-light blur and noise, motion blur, over-

exposure, underexposure, compression errors and their combi-

nation. Subjective ratings are MOS in the range of 0 to 100. 

.1.2. Performance evaluation criteria 

The performance of BIQA methods can be evaluated by four cri-

eria computed between predicted scores and subjective scores:

pearman rank order correlation coefficient (SRCC) and Kendall

ank order correlation coefficient (KRCC) for prediction monotonic-

ty, Pearson linear correlation coefficient (PLCC) for prediction ac-

uracy and root mean squared error (RMSE) for prediction accu-

acy. The latter two are computed after the monotonic logistic

apping between objective and subjective scores [39] . 

f (x ) = β1 

(
1 

2 

− 1 

exp (β2 (x − β3 )) 

)
+ β4 x + β5 (14)

here x is the score predicted by IQA metric, f ( x ) is the fitted

core, β j ( j = 1 , 2 , . . . , 5) are regression parameters determined by

inimizing the errors between objective and subjective scores. 

.2. Implementation details 

Since image correlation is related to image scale, we resize each

mage before feature extraction, to make the larger image side

quals 512. Similar operation has also been adopted by previous

ethod [28] . We use the neighborhood setting (R = 1 , P = 8) to

alculate the log-contrast vectors, as shown in Fig. 1 (a). We fix the

umber of GMM components as 512, and the power normalization

arameter α as 0.25. To construct the NSS model that represents

he statistical regularities of natural images, we use the collection

f pristine naturalistic images released by [28] to train the GMM

odel. 

.3. Parameter choice 

There are a few parameters in the proposed BJLC method. Here,

e examine how the performance varies with different parame-

ers. Specifically, we examine three parameters, the neighborhood

etting ( R, P ), the number of GMM components K , and the power

ormalization parameter α. We report the median SRCC values

ith different parameters on each database, with 80% of the dis-

orted images are used for training, and the remaining 20% for test-

ng. The train and test sets are content disjoint. And the train-test

plit is repeated 10 0 0 times. 
.3.1. The neighborhood setting 

First, we examine how the performance of BJLC varies with dif-

erent neighborhood settings. Three square neighborhood settings

re tested, as shown in Fig. 1 . The first setting is (R = 1 , P = 8) ,

here 8 neighbouring pixels on the border side of 3 × 3 block are

mployed. The second setting is (R = 2 , P = 16) , where 16 neigh-

ouring pixels on the border side of 5 × 5 block are employed.

he third setting is (R = 3 , P = 24) , where 24 neighbouring pix-

ls on the border side of 7 × 7 block are employed. From Fig. 4

a), we observe that increasing the spatial resolution of the square

eighborhood does not provide significant performance improve-

ent. With a larger neighborhood, the directional resolution in-

reases as more directions are considered in the log-contrast fea-

ure vector. However, the spatial correlation becomes weak as the

patial distance for calculating the grey-level differences increases.

t may counteract the benefits of increased directional resolution.

s larger neighborhood induces the computational overhead, we

dopt (R = 1 , P = 8) in the proposed method for computational

implicity and performance accuracy. 

.3.2. The number of GMM components 

The number of GMM components is a key factor to the per-

ormance. As the number of GMM components increases, the fea-

ure dimension increases and more discriminative information is

etained in the extracted features. However, it would also induce

ore memory and computational costs. In Fig. 4 (b), we show the

erformance measured by SRCC on four benchmark databases with

ifferent GMM sizes. From this Figure, we observe that the per-

ormance of the proposed method increases with the number of

MM components on all the four databases, but the performance

radually saturates as the increase of GMM components. There-

ore, to achieve a tradeoff between performance and computational

omplexity, we fix the number of GMM components as 512 in the

ollowing experiments. 

.3.3. The power normalization parameter 

The power normalization parameter 0 ≤α ≤ 1 is used to un-

parsify the FV feature and improve the regression performance.

hen α equals 0, only the sign information is preserved; when α
s 1, there would be no processing on the FV feature. From

ig. 4 (c), we choose α = 0 . 25 as a reasonable value for all the

atabases. 

.4. Overall performance on individual database 

We examine the performance of BIQA methods on overall

atabase. For each database, We split it into train and test sets

ith 80% for training and 20% for testing. For LIVE, CSIQ and

ID2013, the split is conducted according to reference images to

ake sure that the two sets are content disjoint. For CLIVE, the

atabase is split randomly to the train and test sets. The split is

epeated 10 0 0 times and the median performance is reported. The

5th reference image and its distorted versions are excluded from

ID2013 as it is not a natural image. 

BJLC is compared with ten state-of-the-art BIQA models, in-

luding NIQE [40] , ILNIQE [28] , DIIVINE [17] , BLIINDS2 [22] , COR-

IA [41] , BRISQUE [23] , GMLOG [27] , NFERM [42] , NRSL [43] and

RIQUEE [25] . Among them, ILNIQE and FRIQUEE are color met-

ics, and other methods work on the luminance channel only. Both

IQE and ILNIQE are opinion-free BIQA models, which requires no

raining on the database, and we report the median performance

f 10 0 0 trails on the test set for consistent comparison. 

Table 1 lists the SRCC and KRCC values of examined BIQA

ethods on four databases to show their prediction monotonicity.

able 2 lists the PLCC and RMSE values to show their prediction

ccuracy. These two tables show that BJLC achieves better quality
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Fig. 4. The SRCC performance with different parameter settings. (a) SRCC values with different square neighborhood settings. (b) SRCC values with different number of GMM 

components. (c) SRCC values with different power normalization parameters. 

Table 1 

SRCC and KRCC comparison on four benchmark databases. The best method is shown in boldface. 

BIQA model LIVE (779) CSIQ (866) TID2013 (2880) CLIVE (1162) Weighted average 

SRCC KRCC SRCC KRCC SRCC KRCC SRCC KRCC SRCC KRCC 

NIQE [40] 0.9084 0.7333 0.6299 0.4665 0.3238 0.2208 0.4496 0.3066 0.4777 0.3473 

ILNIQE [28] 0.9024 0.7224 0.8209 0.6323 0.5251 0.3730 0.4393 0.2990 0.6053 0.4462 

DIIVINE [17] 0.9120 0.7487 0.7594 0.5718 0.6735 0.4947 0.5969 0.4213 0.7043 0.5270 

BLIINDS2 [22] 0.9298 0.7754 0.7528 0.5652 0.5723 0.4137 0.4626 0.3227 0.6274 0.4688 

CORNIA [41] 0.9452 0.7953 0.7325 0.5464 0.6542 0.4770 0.6173 0.4400 0.6993 0.5246 

BRISQUE [23] 0.9436 0.8005 0.7403 0.5590 0.5739 0.4149 0.6072 0.4291 0.6475 0.4859 

GMLOG [27] 0.9498 0.8105 0.8035 0.6189 0.7100 0.5256 0.5972 0.4199 0.7372 0.5596 

NFERM [42] 0.9427 0.8063 0.8213 0.6394 0.6747 0.4976 0.5404 0.3734 0.7071 0.5371 

NRSL [43] 0.9517 0.8186 0.8454 0.6681 0.6706 0.4951 0.6290 0.4472 0.7281 0.5569 

FRIQUEE [25] 0.9347 0.7817 0.8815 0.7077 0.6926 0.5161 0.6909 0.5012 0.7548 0.5793 

BJLC 0.9561 0.8203 0.8855 0.7122 0.7490 0.5606 0.6996 0.5074 0.7886 0.6091 

Table 2 

PLCC and RMSE comparison on four benchmark databases. The best method is shown in boldface. 

BIQA model LIVE (779) CSIQ (866) TID2013 (2880) CLIVE (1162) Weighted average 

PLCC RMSE PLCC RMSE PLCC RMSE PLCC RMSE PLCC 

NIQE [40] 0.9088 11.3756 0.7253 0.1787 0.4200 1.1249 0.5084 17.4015 0.5528 

ILNIQE [28] 0.9086 11.4064 0.8160 0.1482 0.6475 0.9461 0.5126 17.3462 0.6821 

DIIVINE [17] 0.9134 11.0959 0.8077 0.1546 0.7294 0.8504 0.6271 15.7668 0.7462 

BLIINDS2 [22] 0.9370 9.5072 0.8134 0.1522 0.6511 0.9403 0.5072 17.4188 0.6865 

CORNIA [41] 0.9473 8.7478 0.8044 0.1554 0.7451 0.8247 0.6642 15.1365 0.7660 

BRISQUE [23] 0.9482 8.6605 0.8311 0.1442 0.6213 0.9668 0.6445 15.4497 0.7037 

GMLOG [27] 0.9574 7.8943 0.8583 0.1344 0.7687 0.7979 0.6205 15.8003 0.7785 

NFERM [42] 0.9463 8.8021 0.8658 0.1298 0.7465 0.8301 0.5699 16.6413 0.7566 

NRSL [43] 0.9570 7.8790 0.8849 0.1199 0.7548 0.8185 0.6510 15.34 4 4 0.7817 

FRIQUEE [25] 0.9411 9.2061 0.9069 0.1113 0.7688 0.7965 0.7227 13.9919 0.8045 

BJLC 0.9595 7.7081 0.9182 0.1041 0.8083 0.7341 0.7320 13.7830 0.8306 
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prediction results than other representative BIQA methods. Among

them, BJLC, FRIQUEE and NRSL deliver consistent better perfor-

mance on all the four databases. NFERM achieves encouraging per-

formance on CSIQ and TID2013 databases, while its performance

on CLIVE is suboptimal. By contrast, CORNIA and BRISQUE per-

form well on LIVE and CLIVE databases, but they perform poorly

on CSIQ and TID2013 databases. ILNIQE is an effective method on

CSIQ database, however, its performance on other three databases

is unsatisfactory. 

Fig. 5 illustrates the box plots of SRCC values across 10 0 0 train-

test trails for all the examined BIQA methods. BJLC has more com-

pact SRCC distributions on four databases, with higher median

SRCC values and smaller standard deviation, which suggests that

BJLC performs more accurately and consistently than other meth-

ods. To testify the performance differences between any two meth-

ods are statistically significant, the two sample T-test is performed

between SRCC obtained by competing BIQA methods from 10 0 0
rain-test trails. The null hypothesis is that the SRCC values of the

ethods in comparison are drawn from populations with equal

eans at 95% confidence level. Table 3 shows that BJLC is statisti-

ally superior to all the competing methods on four databases with

nly one exception, where BJLC and GMLOG performs statistically

quivalent on the LIVE database. 

.5. Performance on individual distortion type 

We compare the performance of examined methods on indi-

idual distortion types. The BIQA models are trained with 80% of

he distorted images with specific distortion, and tested on the re-

aining 20% distorted images with the same distortion type. We

nly list the SRCC results for brevity. KRCC, PLCC and RMSE would

ollow similar trend. Table 4 shows the performance on LIVE and

SIQ databases, and Table 5 shows the performance on TID2013

atabase. Since images degraded by realistic distortions have no
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Fig. 5. The box plots of SRCC across 10 0 0 train-test trails on four databases. The upper and lower edges of the rectangles indicate the first and third quartiles. The black dot 

inside the circle is the median SRCC of 10 0 0 trials. 

Table 3 

Statistical significance test ( t -test) on four databases. ↑ ( ↓ ) indicates the row method is statistically better (worse) than the column method 

at 95% confidence level. 0 indicates that the row and column methods are statistically equivalent. The four symbols in each table cell 

represent the results on four databases, i.e., LIVE, CSIQ, TID2013, CLIVE. 

NIQE ILNIQE DIIVINE BLIINDS2 CORNIA BRISQUE GMLOG NFERM NRSL FRIQUEE BJLC 

NIQE 0 0 0 0 ↑↓↑↓ 0 ↓↓↓ ↓↓↓↓ ↓↓↓↓ ↓↓↓↓ ↓↓↓↓ ↓↓↓↓ ↓↓↓↓ ↓↓↓↓ ↓↓↓↓ 
ILNIQE ↓↑↓↑ 0 0 0 0 ↓↑↓↓ ↓↑↓↓ ↓↑↓↓ ↓↑↓↓ ↓↑↓↓ ↓↑↓↓ ↓↓↓↓ ↓↓↓↓ ↓↓↓↓ 
DIIVINE 0 ↑↑↑ ↑↓↑↑ 0 0 0 0 ↓ 0 ↑↑ ↓↑↑↓ ↓↓↑↓ ↓↓↓ 0 ↓↓ 0 ↑ ↓↓ 0 ↓ ↓↓↓↓ ↓↓↓↓ 
BLIINDS2 ↑↑↑↑ ↑↓↑↑ ↑ 0 ↓↓ 0 0 0 0 ↓↑↓↓ ↓↓ 0 ↓ ↓↓↓↓ ↓↓↓↓ ↓↓↓↓ ↓↓↓↓ ↓↓↓↓ 
CORNIA ↑↑↑↑ ↑↓↑↑ ↑↓↓↑ ↑↓↑↑ 0 0 0 0 0 ↓↑↑ ↓↓↓↑ ↑↓↓↑ ↓↓↓↓ ↑↓↓↓ ↓↓↓↓ 
BRISQUE ↑↑↑↑ ↑↓↑↑ ↑↑↓↑ ↑↑ 0 ↑ 0 ↑↓↓ 0 0 0 0 ↓↓↓↑ 0 ↓↓↑ ↓↓↓↓ ↑↓↓↓ ↓↓↓↓ 
GMLOG ↑↑↑↑ ↑↓↑↑ ↑↑↑ 0 ↑↑↑↑ ↑↑↑↓ ↑↑↑↓ 0 0 0 0 ↑ 0 ↑↑ ↑↓↑↓ ↑↓↑↓ 0 ↓↓↓ 
NFERM ↑↑↑↑ ↑↓↑↑ ↑↑ 0 ↓ ↑↑↑↑ ↓↑↑↓ 0 ↑↑↓ ↓ 0 ↓↓ 0 0 0 0 ↓↓↑↓ ↑↓↓↓ ↓↓↓↓ 
NRSL ↑↑↑↑ ↑↑↑↑ ↑↑ 0 ↑ ↑↑↑↑ ↑↑↑↑ ↑↑↑↑ ↓↑↓↑ ↑↑↓↑ 0 0 0 0 ↑↓↓↓ ↓↓↓↓ 
FRIQUEE ↑↑↑↑ ↑↑↑↑ ↑↑↑↑ ↑↑↑↑ ↓↑↑↑ ↓↑↑↑ ↓↑↓↑ ↓↑↑↑ ↓↑↑↑ 0 0 0 0 ↓↓↓↓ 
BJLC ↑↑↑↑ ↑↑↑↑ ↑↑↑↑ ↑↑↑↑ ↑↑↑↑ ↑↑↑↑ 0 ↑↑↑ ↑↑↑↑ ↑↑↑↑ ↑↑↑↑ 0 0 0 0 

Table 4 

SRCC comparison of BIQA methods on individual distortion type for LIVE and CSIQ. 

BIQA model LIVE (779) CSIQ (866) 

JP2K JPEG WN GB FF WN JPEG JP2K PGN GB CTD 

NIQE [40] 0.9239 0.9423 0.9715 0.9395 0.8616 0.8366 0.8826 0.9267 0.3275 0.9062 0.2786 

ILNIQE [28] 0.9002 0.9439 0.9791 0.9244 0.8443 0.8681 0.9043 0.9239 0.8835 0.8676 0.5447 

DIIVINE [17] 0.9151 0.9142 0.9813 0.9377 0.8714 0.9404 0.8884 0.8706 0.8038 0.8563 0.7661 

BLIINDS2 [22] 0.9324 0.9519 0.9435 0.9321 0.8821 0.9223 0.9519 0.9342 0.7818 09249 0.4150 

CORNIA [41] 0.9329 0.9456 0.9791 0.9600 0.9023 0.9498 0.9066 0.9097 0.7717 0.9110 0.6477 

BRISQUE [23] 0.9086 0.9639 0.9853 0.9493 0.8917 0.9604 0.9404 0.8838 0.8776 0.9104 0.5306 

GMLOG [27] 0.9286 0.9711 0.9849 0.9368 0.9128 0.9435 0.9168 0.9137 0.8652 0.9123 0.7446 

NFERM [42] 0.9409 0.9672 0.9853 0.9479 0.8278 0.9459 0.9346 0.9137 0.9008 0.9270 0.6522 

NRSL [43] 0.9293 0.9580 0.9835 0.9515 0.8674 0.9509 0.9469 0.9099 0.8937 0.9160 0.8019 

FRIQUEE [25] 0.9020 0.9553 0.9826 0.9586 0.8770 0.9453 0.9340 0.8910 0.9277 0.9413 0.8687 

BJLC 0.9588 0.9734 0.9862 0.9542 0.9155 0.9622 0.9501 0.9474 0.9314 0.9301 0.8727 
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efinite distortion category, we exclude CLIVE database in this ex-

eriment. 

From Tables 4 and Table 5 , we find that among the 35 distor-

ion groups from the three databases, BJLC ranks the best 26 times.

or other distortion groups, BJLC performs similarly with the best

nes. Such superior performance indicates that BJLC is also a good

istortion-specific BIQA method. All BIQA methods fail on three

istortion types, i.e., #14 non eccentricity pattern noise, #15 lo-

al blockwise distortion of different intensity, #16 mean shift, with

RCC less than 0.6. This may be attributed to the characteristics of
 t  
hese distortions. #14 and #16 are non-structural distortions; #15

s localized distortion. 

.6. Cross-database experiment 

Cross-database experiment is performed to show the general-

zation capability of examined BIQA methods. These methods are

rst trained using the whole LIVE database and examined on CSIQ

nd TID2013 databases. The common four distortions shared by

hese databases are used for testing (i.e., JP2K, JPEG, WN, GB). From
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Table 5 

SRCC comparison of BIQA methods on individual distortion type for TID2013. 

BIQA model TID2013 (2880) 

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 

NIQE [40] 0.8492 0.6976 0.7155 0.8100 0.8613 0.8162 0.8746 0.8385 0.6577 0.8808 0.9077 0.0104 

ILNIQE [28] 0.9034 0.8288 0.9377 0.6962 0.8843 0.8299 0.8867 0.8646 0.8019 0.8832 0.9209 0.3577 

DIIVINE [17] 0.9063 0.8235 0.8896 0.7500 0.9271 0.9174 0.6376 0.9400 0.8192 0.8262 0.8923 0.6238 

BLIINDS2 [22] 0.7415 0.5731 0.5696 0.5485 0.7537 0.7353 0.6185 0.8600 0.7419 0.7758 0.8850 0.6428 

CORNIA [41] 0.9377 0.8907 0.8508 0.8484 0.9120 0.9200 0.9236 0.9246 0.8326 0.8916 0.9047 0.7055 

BRISQUE [23] 0.90 0 0 0.8244 0.8903 0.6226 0.9131 0.8512 0.8023 0.8969 0.7403 0.8695 0.9039 0.4938 

GMLOG [27] 0.9454 0.8846 0.8887 0.7755 0.9386 0.8922 0.9022 0.9292 0.8700 0.9238 0.9277 0.5981 

NFERM [42] 0.9314 0.8631 0.9162 0.7799 0.9377 0.8584 0.8615 0.9268 0.8331 0.9116 0.9431 0.5692 

NRSL [43] 0.9127 0.8277 0.9138 0.7977 0.9452 0.9108 0.8212 0.9423 0.8541 0.8931 0.9292 0.6287 

FRIQUEE [25] 0.9500 0.9085 0.9562 0.8415 0.9577 0.9285 0.9222 0.9446 0.8723 0.9127 0.9043 0.6219 

BJLC 0.9585 0.8938 0.9227 0.8587 0.9609 0.9398 0.9448 0.9685 0.9252 0.9462 0.9531 0.7785 

BIQA model TID2013 (2880) 

#13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24 

NIQE [40] 0.6004 −0.1762 −0.0465 −0.1335 0.0433 −0.2250 0.7503 0.1662 0.8431 0.8095 0.7131 0.8738 

ILNIQE [28] 0.6600 −0.1772 −0.0569 0.2512 0.0623 −0.1187 0.7438 0.4285 0.8820 0.7977 0.8169 0.9054 

DIIVINE [17] 0.8189 0.2528 −0.0015 0.0873 0.5895 0.0596 0.8660 0.6256 0.8125 0.8492 0.8145 0.8534 

BLIINDS2 [22] 0.5654 0.2583 0.2362 0.2191 0.2696 −0.0762 0.7834 0.5645 0.6892 0.7454 0.7508 0.8854 

CORNIA [41] 0.7905 0.4791 −0.1208 0.2046 0.5903 0.2912 0.9046 0.7665 0.9131 0.8742 0.8222 0.8965 

BRISQUE [23] 0.7227 0.2960 0.4572 0.2262 0.3529 0.3131 0.8435 0.4296 0.7495 0.8738 0.7657 0.8789 

GMLOG [27] 0.7962 0.1683 0.3898 0.3615 0.6581 0.3738 0.8423 0.6963 0.8485 0.9162 0.7638 0.9223 

NFERM [42] 0.7262 0.1585 0.2462 0.2742 0.6633 0.2577 0.8546 0.5403 0.8292 0.8677 0.8484 0.9085 

NRSL [43] 0.7885 0.1787 0.3542 0.1398 0.5896 0.1729 0.8737 0.7409 0.8543 0.9101 0.8616 0.9054 

FRIQUEE [25] 0.8364 0.2306 0.3485 0.3956 0.7530 0.7677 0.9345 0.5677 0.9323 0.9069 0.8731 0.9077 

BJLC 0.8726 0.4719 0.5467 0.4469 0.7173 0.4642 0.9292 0.7830 0.9377 0.9423 0.8959 0.9562 

Table 6 

SRCC comparison on cross-database validation. 

DB:DT NIQE ILNIQE DIIVINE BLIINDS2 CORNIA BRISQUE GMLOG NFERM NRSL FRIQUEE BJLC 

CSIQ:JP2K 0.9062 0.9062 0.8582 0.8644 0.9125 0.8585 0.8859 0.8980 0.8788 0.8531 0.9222 

CSIQ:JPEG 0.8820 0.8993 0.8707 0.9241 0.9076 0.8923 0.9153 0.9180 0.9080 0.9106 0.9423 

CSIQ:WN 0.8098 0.8498 0.8763 0.8993 0.7503 0.8998 0.8963 0.9196 0.8556 0.8496 0.9327 

CSIQ:GB 0.8948 0.8579 0.8797 0.8975 0.9172 0.8908 0.8907 0.8928 0.8901 0.8488 0.8995 

CSIQ:ALL 0.8693 0.8800 0.8708 0.9009 0.8983 0.8879 0.8968 0.9077 0.8905 0.8754 0.9260 

TID2013:JP2K 0.8980 0.9121 0.8653 0.9027 0.9033 0.9079 0.9297 0.9438 0.9503 0.9126 0.9281 

TID2013:JPEG 0.8629 0.8672 0.8457 0.8575 0.8959 0.8896 0.8985 0.9148 0.9276 0.8363 0.9187 

TID2013:WN 0.8163 0.8859 0.8683 0.7369 0.7364 0.8209 0.8990 0.9051 0.8460 0.8107 0.9032 

TID2013:GB 0.8156 0.8349 0.8886 0.7864 0.9150 0.8724 0.9121 0.8820 0.8869 0.8657 0.8986 

TID2013:ALL 0.8106 0.8768 0.8746 0.8452 0.8790 0.8776 0.9125 0.9142 0.9159 0.8712 0.9071 

Table 7 

PLS vs. SVR as regression models. 

DB METHOD 80%Train-20%Test 50%Train-50%Test 20%Train-80%Test 

SRCC Train/Test TIME(s) SRCC Train/Test TIME(s) SRCC Train/Test TIME(s) 

LIVE BJLC SVM 0.9523 6.594/1.041 0.9452 2.850/1.516 0.9307 0.557/ 1.012 

BJLC 0.9561 0.094/0.007 0.9460 0.069/0.015 0.9310 0.034/0.025 

CSIQ BJLC SVM 0.8769 5.731/1.247 0.8548 2.201/1.871 0.8236 0.377/1.216 

BJLC 0.8855 0.087/0.007 0.8555 0.057/0.018 0.8240 0.027/0.029 

TID2013 BJLC SVM 0.6309 86.842/13.663 0.6239 31.813/20.068 0.6027 5.053/13.322 

BJLC 0.7490 0.275/0.026 0.7062 0.181/0.060 0.6633 0.083/0.093 

CLIVE BJLC SVM 0.6792 9.407/2.227 0.6751 3.760/3.365 0.6399 0.646/2.221 

BJLC 0.6996 0.103/0.008 0.6823 0.066 / 0.020 0.6404 0.035/0.036 
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Table 6 , we can see that BJLC has good generalization ability to un-

seen distorted images. Among all these methods, CORNIA is most

effective on GB; NFERM is most effective on WN; BJLC and NRSL

are most effective on JP2K and JPEG artifacts. 

3.7. Choosing PLS as the regression model 

To validate the usage of PLS as the mapping module from

quality-aware features to opinion score, we tested against SVM

combined with the extracted features. We denote the method us-

ing SVM as BJLC SVM 

, and it differs with the proposed BJLC method

in only the regression module. 
From Table 7 , we can observe that PLS performs better when

ombined with our extracted features. Moreover, it is more effi-

ient than SVR in both training and test stages. 

.8. Rum-time comparison 

To apply the BIQA model in real-world applications, the effi-

iency is an important factor. The run-time comparison of average

eature extraction time on CSIQ database is tabulated in Table 8 .

xperiments are performed on a notebook with Intel Core i7-

520M CPU@2.9 GHz and 8 GB RAM. It shows that BJLC is a high
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Table 8 

Run-time comparison for feature extraction. 

BIQA model NIQE ILNIQE DIIVINE BLIINDS2 CORNIA BRISQUE GMLOG NFERM NRSL FRIQUEE BJLC 

Time (s) 0.227 9.840 15.519 61.393 2.449 0.079 0.063 54.025 0.101 28.025 3.023 
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erforming BIQA method with moderate computational complex-

ty. 

. Conclusion 

Two natural image properties have been proved to be useful in

erceptual quality evaluation, i.e., the non-Gaussian statistics and

mage correlations across space, scale and orientation. Joint NSS

odels that bear both of these two properties are overlooked in

he BIQA research. In this work, we have developed a joint NSS

odel of directional log-contrast statistics to exploit these two

roperties. The difficulties in working with joint density can be

argely alleviated by the utilization of Fisher vector for quality-

ware feature extraction. Furthermore, we have developed a joint

SS based BIQA method that delivered better quality prediction

erformance beyond state-of-the-art competitors, and this has vali-

ated the effectiveness of applying joint NSS model in BIQA design.

he proposed NSS model has captured the non-Gaussian, spatial

nd directional correlation properties. Nevertheless, it still lacks

he modeling of inter-scale correlation, and more advanced joint

SS modes are expected to succeed in BIQA research in the future.
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